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1. Introduction

This note describes a procedure exactly equivalent to normal mode

initialization which does not require explicit mention of normal modes.

Mode space equations are replaced by :simple differential equations which

relate geostrophic and ageostrophic components of the model initial

state.

The method is based on representation of geopotential and horizontal

wind vector by three scalar fields: (1) the geostrophic potential,

from which the geostrophic part of the wind and geopotential fields are

obtained; (2) the rotational ageostrophic potential, which defines the

rotational part of the ageostrophic wind, and also contributes to the

geopotential and (3) the divergent ageostrophic potential, which takes

care of the divergent wind but has no geopotential component. The ageo-

strophic component, so defined, does not interact with the geostrophic

component, and can therefore be used as the basis for non-linear initiali-

zation in a manner similar to that used with normal modes. Fourier anal-

ysis shows that the procedures are identical. The non-linear procedure

developed here uses the small-parameter expansion of Baer (1977), with a

modification that makes the procedure less cumbersome to apply. In terms

of the manifold concept introduced by Leith (1980), the geostrophic

potential defines the "slow mode axis", and the ageostrophic potentials

the "fast mode axis". The ageostrophic potentials computed from a given

geostrophic potential via the small parameter expansion define a point

on the slow manifold.

In addition to giving a clearer understanding of normal mode initializa-

tion, this formulation can be applied readily to limited area models. There
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is a significant difference between this procedure when applied to a

limited area model, and those suggested by Machenhauer (personal

communication) and Briere (1981). In order to define reasonable normal

mode expansion functions, unnecessarily restrictive boundary conditions

must be specified. With the differential equations derived here, no

such functions are necessary. More natural boundary conditions can be

specified for solution of these equations. To see how this is done,

the potential representation is applied to a limited area barotropic

shallow water model with orography. Computational results will be

presented in a later note.

2. The Potential Field Representation

The linear constant f plane shallow water equations can be written

* - ~ - +40 (2.1)

(2.2)

(2.3)

where t is scaled by fo - 1, (x, y) by cfo 1 and by

is twice the rotation rate, and c = is the lit

phase speed (ho the mean depth). Then u, v, and + h;

We suppose that u, v, + can be related to three scl

P as follows:

-W -f-i' P + +
a=2'e~t~ A t+ +1J-~~+ + 

c. = 02o

near gravity wave

ave units of speed.

alar fields, S, W,

(2.4)

(2.5)

c = Ls S + LW + LrFP = s + Ow + 1 p (2.6)
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where Ls, , Lw Lp are as yet unspecified linear differential operators.

S represents the geostrophic component of the flow, while W and P are

designated for the rotational and divergent components of the ageostrophic

flow. Then clearly Ls = 1 yields the proper relation for us, Vs, +s,

viz

._S2/$ _ (2.7)

=ourS~~~~~~ - S. t (2.8)

Z S= S (2.9)

To determine Lw and Lp, we require that Zs C o S Then, if (2.1)-

(2.3) are initialized with a geostrophic state us, Vs, s, no ageostrophic

component will be generated during time integration.

The strategy then is to first substitute (2.4)-(2.6) into (2.1)-(2.3)

and then solve for St, Wt and Pt. In terms of S, W, P, (2.1)-(2.3) become

-57 Jo- v + fxt = Atx + 'P -L W t W- Lp P- (2.10)

- ho +Wt t 4* - Wx -t - Lw Wf - Lp pa (2.11)

5St + Lw ,t + p;- Vt (2.12)

It is assumed in advance that Lw, Lp, - - are all interchangeable

operations. This must be verified after Lw and Lp have been specified.

Taking A of (2.10) added to - of (2.11) gives the divergence equation

imiliarily ~ of '(2.) mn o Z t (2.13)

Similiarily, .) of (2.11) minus of (2.10) gives the vorticity equation

I.p ale -I v < = 7 L P (2.14)
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We now have solved for Pt in (2.13). If we choose Lp = 0, then equations

(2.12) and (2.14) can be solved for St and Wt. There results

V^( I- L f) O * - ( ̀  - ) T (2.15)

VI (}L ) It = LV ( -L,) (2.16)

To eliminate dependence of St on W or P, we must choose Lw = V2 .

we have the desired representation:

": pf -5- A + hP

+ -SI + V, v

and the tendency equations for S, W, P become

(v*-v7) S. =o

To obtain , W, P give u, v, we solve the system of equations

To obtain S. W. P give u, v, we solve the system of equations

So finally

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)vA 4 = 1x - (AX

_v7 p _= 4 U+ %r

V .1,j - = 4, _ q,

S = tY-s

(2.24)

(2.25)

(2.26)
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In solving (2.23)-(2.26) there is a problem deciding what to use

for boundary conditions when u,v, ~ are defined on a limited domain.

This is similar to the problem of solving the Helmholtz equations for

rotational and divergent potentials. A procedure routinely used at NMC

(subroutine HANS, see Gerrity (1976) for details) has been adapted to

solve (2.23)-(2.24) for T and P. A simple modification to HANS makes

it suitable for obtaining W from (2.25).

3. Small Parameter Expansion

We now apply the potential representation to initialization. To

this end, the small parameter expansion of Baer (1977) is used instead

of Machenhauer's (1977) iterative scheme. There are several reasons for

this. Phillips (1981) has pointed out that convergence of the Machenhauer

procedure is a function of, among other things, the amplitude of the mean

flow component, while the small parameter expansion converges independent

of the mean flow. Even when Machenhauer converges, Phillips demonstrated

that it can converge to an incorrect result. Much difficulty has been

experienced in global models initialized with normal mode initialization

using the Machenhauer iteration. Physics cannot be included, initializa-

tion can only be applied to the first few largest vertical wavelengths,

and no improvement in forecast skill has been demonstrated. So there

seems to be little point in pursuing this approach for a limited area

model, where the short range forecast is to be improved. Accordingly we

look at the small parameter expansion, in the hope that real improvement

in forecast skill for the limited area type of model can eventually be

achieved through more accurate specification of initial conditions.
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Suppose £ << 1 is a dimensionless parameter and we scale u, v,

by E , and t by E-1, then the non-linear f-plane equations may be

written

E 'P_'r_+- (3.1)

E f~ - u -+ + £ Af (3.2)
f i~ -tAfa --ra + g 0 (3.3

where ua, va, 4 a are used to represent non-linear forcing. In the

next section, uaa, a, #a are given specific forms for a barotropic

model with orography, that will serve as a computational example.

In terms of the S, W, P representation just introduced (3.1)-(3.3)

become:

S* = 5 (3.4)

£it4 SA - -P t £(3.5)

it j -( v A-l)v /-i-£ F(3.6)
Note that (3.4)-(3.6) are integrated versions of (2.20)-(2.22) with non-

linear terms added. (V 4 - V 2) has been removed from (3.4)-(3.5), and V

from (3.6). This could be cause for concern. However, any solution

which satisfies (3.4)-(3.6) will also satisfy the differentiated equations.

Now the initialization problem is--given S, determine W and P such

that the resulting time evoluation is "slow", i.e. (Wt, Pt) = 0 ( ).

Define

co

( )L( O We) pa ) (3.7)
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Substituting (3.7) into (3.4)-(3.6) and equating equal powers of E yields

for the nth order system

S~~~~~
Vt

h/n-lf - P, + h/n- 

- ( t 1) V, + t

The zero order solution is

So, = So

-P - 0
0~~" s

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

W4 = -(3.13)

So SO is arbitrary, but Po 0 Wo = 0. Now we assume Sn = 0 for n > 0,

and then we have for Pn, Wn

Wnh -I ht(3

~ (7 l) 5t -- -/. (3

: 5..r 5 K (3

.14)

.15)

.16)

To determine Pn, Wn, we must compute, from (. ' ;w : I, =I-,-) A-' (,a,
a a p
Wn-l, Wnl,t and PnlPn _lt This is rather difficult to do when Wa,

pa, Sa are non-linear functions of S, W, P. To first order, it is not

very difficult (equivalent in fact to one interation of Machenhauer),

while second order is more of a problem and higher order virtually im-

possible. However, the effect of terrain, latent heating, surface

friction, and model geometry can require several orders of solution

W-4.f; IZ S VI ny)
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before adequate convergence is achieved. This computational difficulty

is perhaps the principle reason why the expansion method is not yet

implemented in practice.

a a a
To solve this dilemma, linearize Sn, Wn, Pn about the zero order state

(So, 0, 0):

A n SI + n N 

OL L p LWh +~ 1 W(3.17)~= 5~ + ~~~~Ykj 

L L L NL NL NL
where Sn, Wn, Pn now depend linearly on Sn, Wn, Pn and Sn , W , Pn

NLh NL NL
non-linearly on Sj, Wj, Pj for 1 < j < n. By definition SO = Wo = Po = 0.

ThenL

bo0 = 0o

P = O

(dot) = L AlL

L .W L

1 WztAIL - tA/h~lf~ + V ¼'

(3.18)

To first order, the non-linear part of the solution is not involved. We

have

(va- 1)w, - pL (3.19)

The second

terms:

L

,PI = W 0(3.20)

order solution contains the first contribution from non-linear
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(7P }) WX = I,- -g Pt + I g

f _= WI L _ S + WI

(3.21)

(3.22)

Define ( t) (

Ar L ~~~~~~~~(3.23)
(3.24)

NL NL NL NL NL
To compute W1 , P1 , we first obtain u1 , v1 , 41 using ul, vl, 91

NL NL NL
(obtained from W1, P1). Then obtain S1 , W1 , P1 by solving (2.23)-

(2.26). Now compute the linear part of the solution (neglecting the NL

terms) until 11 l < c IWA 7 f l.L

The assumption is made that || Iu ?kIt < < IIWL 'P1l and

that the cumulative effect of neglecting these terms will not be important

until a fairly high order n is reached in the solution process.

L L a a
It is much easier to calculate Wn, Pn than Wn, Pn. The following

recursion is useful in computing the required terms. Using the notation

~" ~ - ) and 0 = (V 2 -1), then we have

-5 ( P 4 ) (3.25)

<i =

1-4t 0 4_~ R +H'4L 1 P i~ -~~'~(3.26)
t k L ( R 4-k 9V&) 1-l (4 I
P =( SLVP -k+1 )4 ( 4'1P /

We start the recursion at iQ =4 0 with So the given zero-order state,

0 0
and Po = WO = 0. Then for each value jI Os IV , we evaluate (3.25)-

(3.27) for O$S4k.. The result at stage I is

(3.27)

t
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I ~~~~~~FI

lv' - W~·t-i ' +i!

which gives the 0+I) terms of W and P.

. E Some explanation of (3.25)-(3.27) is in order.

M ; ( SJ Id) );)

The terms

P L ( S.A, P)lI-

are obtained by first computing u, v, + from S, W, P using the definition

(2.17)-(2.19), then computing uL, L, , L, the parts of ua , va, 4 a linearized

about uo, vo, +0o Finally we solve for SL, WL, pL using (2.23)-(2.26). The

inversion of 0 = (V 2 - 1) represented in (3.26) is identical to solving

(2.25) (the modified HANS subroutine is used). The only disadvantage of

the recursion scheme presented here is that a large number of intermediate

fields must be saved. A storage scheme has been worked out that would

require the use of two disk files. Figure 2.1 illustrates the scheme,

and also gives a better picture of the pattern generated by (3.25)-(3.27).

Now we consider a specific example.
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Stage :

Computed
from

(3.25)-(3.27)
Output to

File 2

2j41

We

P Q+1
W .

St 'P

W 1-l 

: .i _
S 0

WI

0

F;

(-o)
( o)

( o)

0 0 0 .

Initialize file 1 for J= 0 with SO, Wo, PO when stage I is complete,

= I + 1, and file 2 becomes input file, file 1 the output file.

Figure 2.1

Input
from

file 1

We (:0) Wo

PoA (to) pw

w1

47

X i

----- -- >

. . _ >~~7"
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4. Barotropic model

As a specific example of application of the previously outlined

initialization procedure, we consider a barotropic model on a polar

stereographic projection with the effect of orography included. The

equations are:

(4.1)

(4.2)

(4.4)

~~~ ~~~~~(j WJ(4.5)
I + $1-~) (4.6)

~ + S--n-~f = nQ(8~2(4.7)R il t ' ) (4.8)
Q1 = 7.292 x 10 - 5 sec- 1

a = 6.371 x 106 m

= deviation geopotential

= gh - rest state geopotential

= gho0 ground geopotential
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To get these equations into the form of (3.1)-(3.3), we do the following.

First define scaled winds

(U, V*) (I -2A)

Then (4.1)-(4.3) may be written

+ o a. (4.10)

J + +f %sa
q) ) oo

where C2 = + and

/~

� �14 ) +1TO a�-M IL- , 0 i� -A
O - A * �L [;V� (O

1�
Now apply the same scaling as used in section 2. The desired form is

now

as

V.r -*f _ r v A (4.16)

-by- of 4 a
(4.17)

(4.18)

(4.9)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

= Of (J .)

=. f "* - ��6 ) x
.�k _ D 4

14fo

7,.
z - r- -

) -x

fo

Of v I w-- o
- ) _' (_/~ ti)(

,.' I it^

+ IU

_ He%

, a J a,

(14 + e )

~0' cqz'
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.^ When referring to (4.16)-(4.18) the variables are assumed to be scaled
_e by (4.9) and the non-dimesionalization of section 2. When referring to

computationof the non-linear terms, the variables are assumed to be the

original unscaled form. To get (4.13)-(4.15) in a form more convenient

for computing, use (4.1)-(4.2)to replace (/) , /v in

(4.13), (4.14):

i M_ (4~) Io 1) 1.(1- .o , dj -lt as (" ) (4.19)

Wo z k-(B0 -1)-V(I-t~aM ~+ {4h("L~t) (4.20)

To obtain computational forms for uL, vL, +L and uNL, vNL, +NL as required

for the procedure outlined in the previous section, replace u, v, + by

uo + ul', vo + vl', o + e . Then uL, vL, ¢L is that part of ua, va, Ma

which is linear in u1 , v1, 41. uL, vL, J can most easily be computed by

W first obtaining uNL, vNL, , where

(A piL - [(A) 

a-x ~~~~~~~~(4.21)

Vo + o I + z (4.22)

o {ax t en ~) +ti ( Inz)} (4.23)

Then we have

4 = $14 (4.24)

L = (4.25)

AiIL~ ~~~~ 0 o(4.26)

Now, when applying the recursion (3.25)-(3.27) to obtain a balanced initial

0 0 0
_e state, u0, vO, 4o will always be defined by SO' Po = 0, W o = 0 and
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I
tA J# = h

when computing L,

when computing uL,

~t.1

- A.w

VL, 4 L from which SL, WL, pL are obtained.
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